GRUP RSA MERUPAKAN GRUP *PSEUDO-FREE* DI BAWAH ASUMSI RSA KUAT

Khussal Zamlahani [©], Dr. Agung Lukito, M. S. [©],

Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya

Jl. Ketintang Surabaya 60231

email: zamlahani@yahoo.com, zamlahani@gmail.com

ABSTRAK

Di bawah asumsi RSA kuat, dibuktikan bahwa grup perkalian modulo hasil kali dua prima selamat merupakan grup *pseudo-free*. Dengan kata lain, jika permasalahan RSA kuat sulit secara asimtotik berkenaan dengan distribusi ensembel $\mathcal N$ atas hasil kali dua bilangan prima selamat berbeda, maka keluarga grup komputasional $\mathbb Z_N^*$ (N=PQ, dengan P dan Q bilangan prima selamat berbeda, dengan operasi perkalian modulo dan prosedur sampling seragam atas QR_N) merupakan grup *pseudo-free* berkenaan dengan ensembel distribusi yang sama.

Keywords: asumsi RSA kuat, grup RSA, residu kuadratik, *pseudo-free*, prima selamat.

PENDAHULUAN

Kriptosistem RSA merupakan enkripsi kunci-publik (asimetris), yaitu menggunakan kunci yang berbeda dalam enkripsi dan dekripsi. Untuk mengenkripsi suatu pesan digunakan persamaan $c = m^e \mod n$ dengan m adalah representasi bilangan bulat (dalam \mathbb{Z}_n) pesan/plaintext (teks, gambar, suara, dsb.), n = pq adalah hasil kali dua bilangan prima (acak, berbeda, cukup besar, berukuran bit sama), e adalah kunci publik (bersama dengan n) yang merupakan bilangan bulat $1 < e < \phi(n)$ $\phi(n) =$ dengan (dengan (p-1)(q-1) menyatakan banyak bilangan bulat positif kurang dari n yang relatif prima dengan n), yang relatif prima dengan $\phi(n)$. Sedangkan untuk mengenkripsi digunakan persamaan $m = c^d \mod n$ dengan c adalah ciphertext, dan d adalah kunci privat yang merupakan invers perkalian e modulo $\phi(n)$.

Telah diasumsikan oleh Rivest [6] bahwa tidak mungkin (mudah dengan peluang yang tak terabaikan) dengan menggunakan algoritma efisien apapun untuk mencari solusi $x \in \mathbb{Z}_n^*$ dan e > 1 dari persamaan $x^e \equiv a \pmod{n}$ dengan input $a \in \mathbb{Z}_n^*$ yang dipilih secara acak dan n adalah hasil kali dua bilangan prima besar yang dipilih secara acak. Singkatnya, sangat sulit bagi seseorang yang mengetahui ciphertext dan salah satu kunci publik n

untuk mencari tahu *plaintext* dengan menggunakan suatu algoritma yang efisien dan kunci publik *e* yang ia pilih sendiri. Asumsi tersebut disebut dengan Asumsi RSA Kuat.

Grup pseudo-free memiliki syarat yang diperlukan agar permasalahan tersebut menjadi sulit. Secara informal, sebuah grup hingga G dikatakan pseudo-free jika tidak ada algoritma probabilistik berwaktu polinomial yang bisa secara efisien menghasilkan sebuah persamaan nontrivial E berikut solusinya di G dimana E tidak memiliki solusi di grup bebas.

Tulisan ini merupakan studi literatur dari sebuah paper yang berjudul *The RSA group is pseudo-free* karangan Daniele Micciancio. Dalam tulisan ini dibuktikan bahwa di bawah asumsi RSA kuat dengan ensembel distribusi $\mathcal N$ atas hasil kali prima selamat, keluarga grup komputasional $\mathbb Z_N^*$ (dengan operasi perkalian modulo, dan prosedur sampling seragam atas QR_N) merupakan grup *pseudo-free* berkenaan dengan ensembel distribusi yang sama.

Sistematika penulisan dimulai dengan pendahuluan pada bagian 1. Dasar teori pada bagian 2 yang mendasari pembahasan. Kemudian bagian 3 merupakan pembahasan/pembuktian dari teorema inti dan beberapa lemma yang mendukungnya. Bagian 4 berisi kesimpulan dari bagian 3.

DASAR TEORI

Grup Bebas & Persamaan Grup Definisi 1

Misalkan $A = \{a_1, a_2, ..., a_l\}$. Untuk setiap a_i , misalkan a_i^{-1} invers a_i . Misalkan $A^{-1} = \{a_i^{-1} | a_i \in A\}$, dan misalkan $A^{\pm 1} = (A \cup A^{-1})$. Misalkan F(A) himpunan kata dalam bentuk kanonik atas $A^{\pm 1}$, bersama dengan operasi · yaitu konkatenasi yang diikuti dengan reduksi hingga menghasilkan kata dalam bentuk kanonik, dapat dibuktikan bahwa F(A) membentuk sebuah grup. Grup ini disebut **grup bebas** dan A disebut **pembangun** F(A). Untuk selanjutnya diperbolehkan menulis $F(a_1, a_2, ..., a_l)$ jika $A = \{a_1, a_2, ..., a_l\}$.

Definisi 2

Misalkan X dan A berturut-turut himpunan hingga variabel dan konstanta yang saling lepas. Didefinisikan $X^{-1} = \{x^{-1} : x \in X\}$ dan $A^{-1} =$ $\{a^{-1}: a \in A\}$. **Persamaan grup** atas variabelvariabel X dan konstanta-konstanta A adalah pasangan $E = (w_1, w_2)$, biasa ditulis $E: w_1 = w_2$, dengan $w_1 \in F(X)$ dan $w_2 \in F(A)$. Sebuah **solusi** persamaan $E: w_1 = w_2$ (atas grup bebas F(A)) merupakan sebuah fungsi $\sigma: X \to F(A)$, sedemikianhingga $\sigma(w_1) = w_2$ (dalam F(A)), dengan σ homomorfis yaitu $\sigma(x_1x_2...x_k) =$ $\sigma(x_1)\sigma(x_2)...\sigma(x_k)$, σ dapat diperluas ke dalam kata-kata atas F(X) dan $\sigma(x_i^{-1}) = \sigma(x_i)^{-1}$ untuk setiap $x_i \in X$. Persamaan $E: w_1 = w_2$ dikatakan terpenuhi (atas grup bebas) jika dan hanya jika E memiliki solusi. Jika tidak, maka E dikatakan takterpenuhi.

Definisi 3

Misalkan G grup (komputasional). Persamaan grup atas G (dinotasikan E_{α}) didefinisikan sebagai sebuah persamaan E atas variabel X dan konstanta A, dan sebuah fungsi $\alpha: A \to G$ dengan $\alpha(a_1 a_2 \dots a_l) = \alpha(a_1)\alpha(a_2) \dots \alpha(a_l),$ $\alpha(a_i^{-1}) = \alpha(a_i)^{-1}$ untuk setiap $a_i \in A$. Solusi persamaan E_{α} : $w_1 = w_2$ merupakan fungsi ξ : $X \rightarrow$ G sedemikian hingga $\xi(w_1) = \alpha(w_2)$, dengan ξ yaitu $\xi(x_1x_2\dots x_k) =$ nomomorns yaitu $\xi(x_1x_2...x_k) = \xi(x_1)\xi(x_2)...\xi(x_k)$, ξ dapat diperluas ke dalam kata-kata atas F(X) dan $\xi(x_i^{-1}) = \xi(x_i)^{-1}$ untuk setiap $x_i \in X$.

Residu Kuadratik Modulo N Definisi 4

Sebuah elemen $g \in \mathbb{Z}_N^*$ dikatakan **residu kuadratik** jika dan hanya jika $g = h^2 \mod N$ untuk suatu $h \in \mathbb{Z}_N^*$. Himpunan residu kuadratik modulo N dinotasikan QR_N, dan merupakan subgrup \mathbb{Z}_N^* . Elemen \mathbb{Z}_N^* yang bukan residu kuadratik disebut juga sebagai **nonresidu kuadratik**.

Definisi 5

Grup \mathbb{Z}_N^* disebut **grup RSA** jika dan hanya jika $N = P \cdot Q$ dengan P dan Q merupakan bilangan prima berbeda.

Definisi 6

Bilangan prima P disebut **prima selamat** jika dan hanya jika $\frac{P-1}{2}$ juga merupakan bilangan prima.

Ensembel, Fungsi Terabaikan Definisi 7

Misalkan I himpunan indeks terbilang. Sebuah **ensembel berindeks** I adalah barisan variabel acak berindeks I. Katakanlah, sebarang $\mathcal{X} = \{X_i\}_{i \in I}$,

dengan tiap X_i adalah variabel acak, merupakan ensembel berindeks I.

Definisi 8

Sebuah fungsi $f\colon \mathbb{N} \to \mathbb{R}$ dikatakan **terabaikan** jika dan hanya jika menurun lebih cepat daripada sebarang polinomial invers. Dengan kata lain, untuk sebarang bilangan bulat c>0 ada k_0 sedemikian hingga $|f(k)| \leq \frac{1}{k^c}$ untuk setiap $k>k_0$.

Asumsi RSA Kuat

Definisi 9

Algoritma berwaktu polinomial adalah algoritma yang fungsi waktu jalan kasus-terburuknya dalam bentuk $O(k^c)$ dengan k adalah ukuran input dan c adalah suatu konstanta. Sebarang algoritma yang waktu jalannya tidak bisa dibatasi disebut **algoritma berwaktu eksponensial**.

Definisi 10

Sebuah permasalahan komputasional (dengan parameter k) dikatakan **sulit secara asimtotik** jika dan hanya jika untuk setiap algoritma probabilistik berwaktu polinomial (dalam k), peluang algoritma tersebut menyelesaikan permasalahan tersebut merupakan fungsi yang terabaikan (dalam k).

Asumsi 1

Tidak mungkin bagi suatu algoritma probabilistik berwaktu polinomial, diberikan bilangan bulat n yang merupakan hasil kali dua bilangan prima yang cukup besar yang dipilih secara acak, dan sebuah elemen a dipilih secara acak dari \mathbb{Z}_n^* , untuk memperhitungkan $x \in \mathbb{Z}_n^*$ dan bilangan bulat e > 1 sedemikian hingga

$$x^e \equiv a \pmod{n}$$

dengan peluang yang tak terabaikan.

Grup Komputasional Definisi 11

Misalkan $\mathcal{G} = \{G_N\}_{N \in \mathcal{N}}$ keluarga grup hingga yang diberi indeks $N \in \mathcal{N} \subseteq \{0,1\}^*$. **Keluarga grup komputasional** (terkait dengan \mathcal{G}) didefinisikan sebagai sebuah koleksi fungsi representasi $[\cdot]_N : G_N \to \{0,1\}^*$ sedemikian hingga operasioperasi berikut dapat dilakukan dalam waktu polinomial (probabilistik, berukuran lg N):

- 1) Menguji keanggotaan dalam grup: diberikan $N \in \mathcal{N}$ dan $x \in \{0, 1\}^*$, tunjukkan bahwa $x = [y]_N$ merupakan representasi dari sebuah elemen grup $y \in G_N$.
- 2) Menghitung operasi grup: diberikan $N \in \mathcal{N}$, $[x]_N$ dan $[y]_N$ (untuk sebarang $x, y \in G_N$) hitung $[x * y]_N$.

- 3) Mencari invers elemen grup: diberikan $N \in \mathcal{N}$ dan $[x]_N$ (untuk suatu $x \in G_N$), cari $[x^{-1}]_N$.
- 4) Menghitung representasi elemen indentitas grup: diberikan $N \in \mathcal{N}$, $[e]_N$, dengan e elemen identitas grup G_N .
- 5) Sampling: dengan input $N \in \mathcal{N}$, menghasilkan output representasi [x] dari sebuah elemen grup $x \in G_N$ yang dipilih secara acak

Grup *Pseudo-free* Definisi 12

Keluarga grup komputasional $\mathcal{G} = \{G_N\}_{N \in \mathcal{N}}$ dikatakan pseudo-free jika dan hanya jika untuk sebarang himpunan A berkardinalitas polinomial |A| = p(k) (dengan k adalah ukuran bit N) dan algoritma probabilistik berwaktu polinomial (dalam k) \mathcal{A} , memenuhi syarat berikut ini: Misalkan $N \in \mathcal{N}_k$ indeks grup yang dipilih secara acak dan $\alpha: A \to G_N$ sebuah fungsi yang mendefinisikan |A|elemen grup yang dipilih secara acak berdasarkan prosedur sampling pada grup komputasional. peluang $\mathcal{A}(N,\alpha) = (E,\xi)$ menghasilkan output sebuah persamaan E (atas variabel X dan konstanta A) yang tak terpenuhi bersama dengan solusi $\xi: X \to G_N$ milik E_α atas G_N , merupakan fungsi yang terabaikan dalam k.

PEMBAHASAN

Bagian ini berisi 5 lemma pendukung dan satu teorema utama disertai buktinya.

Lemma 1

Jika N=PQ hasil kali dua bilangan prima selamat berbeda dan $\gamma \in \mathrm{QR}_N$ residu kuadratik, maka γ merupakan pembangun QR_N jika dan hanya jika $\gcd(\gamma-1,N)=1$.

Bukti:

Misalkan P=2p+1 dan Q=2q+1, dengan p dan q adalah bilangan prima berbeda. Dengan menggunakan *Chinese Remainder Theorem*, QR_N isomorfis dengan $QR_P \times QR_Q$ dengan isomorfisme

$$f(\gamma) = (\gamma_p, \gamma_q) = (\gamma \mod P, \gamma \mod Q).$$

Karena $|QR_P| = \frac{P-1}{2} = p$ dan $|QR_Q| = \frac{Q-1}{2} = q$, kita peroleh $|QR_N| = pq$. Misalkan $o(\gamma_p)$ dan $o(\gamma_q)$ berturut-turut orde γ_p di QR_P dan orde γ_q di QR_Q . Pastilah $o(\gamma_p) \in \{1, p\}$ dan $o(\gamma_q) \in \{1, q\}$ dan $o(\gamma) = o(\gamma_p) \cdot o(\gamma_q) \in \{1, p, q, pq\}$. Perhatikan bahwa γ adalah pembangun QR_N jika dan hanya jika $o(\gamma) = |QR_N| = pq$ atau secara ekuivalen

 $o(\gamma_p) = p$ dan $o(\gamma_q) = q$. Misalkan $g = \gcd(\gamma - 1, N)$. Karena g|N, maka $g \in \{1, P, Q, PQ\}$. Akan dibuktikan bahwa $o(\gamma) = pq$ jika dan hanya jika g = 1.

(⇒)Pertama-tama andaikan $g \neq 1$; dengan kata lain, $g \in \{P, Q, PQ\}$. Maka $P \mid g$ atau $Q \mid g$. Tanpa mengurangi keterumuman, diperoleh $P \mid (\gamma - 1)$ sehingga $\gamma \equiv 1 \pmod{P}$, karenanya $\gamma = 1$. Sehingga $o(\gamma_p) = 1$ dan $o(\gamma) \neq pq$.

(\Leftarrow)Kemudian andaikan $o(\gamma) \neq pq$; dengan kata lain, $o(\gamma_p) = 1 \lor o(\gamma_q) = 1$. Asumsikan tanpa mengurangi keterumuman bahwa $o(\gamma_p) = 1$. Maka $\gamma \equiv \gamma_p \equiv 1 \pmod{P}$. Sehingga $P|(\gamma - 1)$ dan karena P|N, maka P|g. Jadi $g \neq 1$. \square

Lemma 2

Untuk sebarang grup siklik G dengan pembangun γ , jika $v \in \mathbb{Z}_B$ dipilih secara acak seragam, maka jarak statistik antara γ^v dan distribusi seragam atas G paling besar $\frac{|G|}{2B}$.

Bukti:

Perhatikan bahwa untuk sebarang $\gamma^i \in G$ dengan $i \in \mathbb{Z}_{|G|}$ berlaku $\gamma^v = \gamma^i$ jika dan hanya jika $v \equiv i \pmod{|G|}$. Misalkan $V = \{v \in \mathbb{Z}_B : v \equiv i \pmod{|G|}\}$ dan misalkan |V| = n. Diketahui

$$\mathbb{Z}_{B} = \{0,1,...,v_{1},...,v_{2},...,v_{n},...,B-1\}$$

dengan $v_j \in V$ untuk setiap $1 \le j \le n$ dan $v_j < v_h \Leftrightarrow j < h$ dan pastilah $v_1 = i$. Karena

$$|\{v_i, v_i + 1, \dots, v_{i+1} - 1\}| = |G|$$

untuk setiap $1 \le j < n$, maka

$$|\{v_1, v_1 + 1, \dots, v_n - 1\}| = (n - 1)|G|.$$

Misalkan $|\{v_n, v_n + 1, ..., B - 1\}| = t$, maka

$$B = i + (n-1)|G| + t$$

$$B - i = (n-1)|G| + t.$$

Jelaslah $t \le |G|$ sehingga $\frac{t}{|G|} \le 1$ dan $\left\lceil \frac{t}{|G|} \right\rceil = 1$. Sehingga diperoleh

$$1 = \left\lceil \frac{t}{|G|} \right\rceil$$

$$n - 1 + 1 = n - 1 + \left\lceil \frac{t}{|G|} \right\rceil$$

$$n = \frac{(n-1)|G|}{|G|} + \left\lceil \frac{t}{|G|} \right\rceil$$

$$n = \left\lceil \frac{(n-1)|G| + t}{|G|} \right\rceil$$

$$n = \left\lceil \frac{B - i}{|G|} \right\rceil.$$

Oleh karena itu, peluang $\gamma^{\nu} = \gamma^{i}$ adalah

$$\Pr{\gamma^{v} = \gamma^{i}} = \Pr{v \equiv i \pmod{|G|}} = \frac{\left[\frac{B - i}{|G|}\right]}{B}$$

Karena i + t < 2|G|, maka (i + t) - |G| < |G| dan tentu saja |G| - (i + t) < |G| sehingga

$$\begin{aligned} \left| |G| - (i+t) \right| &< |G| \\ \left| |G| - (i+t) + n|G| - n|G| \right| &< |G| \\ \left| n|G| - i - t + |G| - n|G| \right| &< |G| \\ \left| n|G| - (i+t-|G| + n|G|) \right| &< |G| \\ \left| n|G| - (i+t+(n-1)|G|) \right| &< |G| \\ \left| n|G| - B \right| &< |G| \\ \frac{\left| n|G| - B \right|}{|G|} &< 1 \\ \frac{1}{B} \frac{\left| n|G| - B \right|}{|G|} &< \frac{1}{B} \\ \frac{\left| \frac{n|G| - B}{|G|} \right|}{|G|} &< \frac{1}{B} \\ \frac{\left| \frac{n}{B} - \frac{1}{|G|} \right|}{|G|} &< \frac{1}{B} \end{aligned}$$

Oleh karena itu,

$$\left| \Pr\{\gamma^{v} = \gamma^{i}\} - \frac{1}{|G|} \right| = \left| \frac{1}{B} \left\lceil \frac{B - i}{|G|} \right\rceil - \frac{1}{|G|} \right| < \frac{1}{B}$$

Maka, jarak statistik antara γ^i dan distribusi seragam atas G

$$\frac{1}{2} \sum_{i=0}^{|G|-1} \left| \Pr{\{\gamma^{v} = \gamma^{i}\}} - \frac{1}{|G|} \right| < \frac{|G|}{2B}$$

seperti yang diinginkan. □

Lemma 3

Untuk sebarang keluarga grup komputasional G, ada algoritma berwaktu polinomial dengan input persamaan E atas konstanta A dan variabel X, grup $G \in \mathcal{G}$, dan pengaitan (assignment) variabel $\xi: X \to G$, menghasilkan output persamaan satu variabel E' dan nilai $\xi' \in G$, sedemikian hingga

1) jika E tak terpenuhi atas grup bebas F(A), maka E' juga tak terpenuhi atas F(A); dan

2) untuk sebarang pengaitan $\alpha: A \to G$, jika ξ adalah solusi E_{α} , maka ξ' adalah solusi E'_{α} .

Bukti

Misalkan inputnya persamaan $E:\prod_{x\in X}x^{e_x}=\prod_{a\in A}a^{d_a}$ dan fungsi pengaitan $\xi\colon X\to G$ dari variabel X ke grup G. Dengan menggunakan Algoritma Euclid yang Diperluas, hitung $e=\gcd(e_x\colon x\in X)$ dan bilangan bulat e_x' sedemikian hingga $\sum_{x\in X}e_xe_x'=e$. Dipilih persamaan output

$$E': x^e = \prod_{a \in A} a^{d_a}$$

dengan solusi

$$\xi'(x) = \prod_{x \in X} \xi(x)^{\frac{e_x}{e}}$$

Akan dibuktikan bahwa persamaan output ini memiliki sifat-sifat yang disyaratkan.

1) andaikan E' memiliki solusi di F(A). Misalkan $\sigma' \in F(A)$ solusi E'; dengan kata lain, $(\sigma')^e = \prod_{a \in A} a^{d_a}$. Untuk setiap $x \in X$, definisikan $\sigma(x) = (\sigma')^{e'_x}$. Karena

$$\sigma\left(\prod_{x} x^{e_{x}}\right) = \prod_{x} \sigma(x)^{e_{x}} = \prod_{x} (\sigma')^{e'_{x}e_{x}}$$

$$= (\sigma')^{\sum_{x} (e_{x}e'_{x})} = (\sigma')^{e}$$

$$= \prod_{a \in A} a^{d_{a}}$$

Ini berarti bahwa σ solusi E di F(A). Ini menunjukkan bahwa E terpenuhi atas grup bebas F(A) pula, dan ini membuktikan sifat pertama.

2) ambil sebarang pengaitan $\alpha: A \to G$, dan misalkan $\xi: X \to G$ adalah solusi untuk E_{α} ; dengan kata lain, $\prod_{x} \xi(x)^{e_x} = \prod_{a} \alpha^{d_a}$ di G.

$$(\xi'(x))^e = \left(\prod_x \xi(x)^{\frac{e_x}{e}}\right)^e = \prod_x \xi(x)^{e_x}$$
$$= \prod_a a^{d_a};$$

dengan kata lain, ξ' adalah solusi E'_{α} atas G. \square

Sebelum pembahasan dilanjutkan ke lemma berikutnya, akan disajikan analisis berikut. Misalkan A himpunan berkardinalitas |A|=p(k), untuk suatu $k\in\mathbb{N}$. Misalkan $v_a\in\{0,1,\dots,N|A|K-1\}$ dengan N=PQ=(2p+1)(2q+1) dengan P dan Q bilangan prima selamat dan $K\in\mathbb{Z}, K>0$. Untuk setiap $a\in A$, misalkan $w_a=v_a \bmod pq$ dan $z_a=\frac{v_a-w_a}{pq}$.

Perhatikan bahwa jika diberikan w_a , maka distribusi z_a seragam atas himpunan

$$S_a = \left\{0, 1, \dots, \left| \frac{N|A|K - 1 - w_a}{pq} \right| \right\}$$

berkardinalitas

$$\begin{split} |S_a| &= \left\lfloor \frac{N|A|K - 1 - w_a}{pq} \right\rfloor + 1 \\ &= \left\lfloor \frac{N|A|K - 1 - w_a}{pq} + 1 \right\rfloor \\ &= \left\lfloor \frac{N|A|K - 1 - w_a + pq}{pq} \right\rfloor \end{split}$$

karena $w_a \le pq - 1$, maka $pq - 1 - w_a \ge 0$. Karena

$$N = PQ = (2p + 1)(2q + 1)$$

= 4pq + 2(p + q) + 1 > 4pq,

maka

$$\frac{N}{pq} > 4.$$

Sehingga paling sedikit

$$|S_a| = \left\lfloor \frac{N|A|K - 1 - w_a + pq}{pq} \right\rfloor \ge \left\lfloor \frac{N|A|K}{pq} \right\rfloor$$

$$> 4|A|K > 4$$

Juga, jika diberikan w_a , maka nilai $\alpha(a) = \gamma^{v_a} = \gamma^{w_a}$ dapat ditentukan secara tunggal, dan z_a terdistribusi seragam atas himpunan S_a .

Lemma 4

Peluang bersyarat bahwa $d = \sum_a v_a d_a \neq 0$ paling sedikit $\frac{3}{4}$. (diberikan α , e = 0, dan $\{d_a : a \in A\}$ sedemikian hingga $e \nmid \gcd(d_a : a \in A)$)

Bukti

Diketahui bahwa $v_a = w_a + pqz_a$, dengan tiap $z_a \in S_a$ dipilih secara acak seragam dari himpunan dengan kardinalitas $|S| \geq 4$. Karena $e \nmid \gcd(d_a : a \in A)$, maka ada $\dot{a} \in A$ sedemikian hingga $d_{\dot{a}} \neq 0$. Atur nilai v_a untuk setiap $a \neq \dot{a}$. Karena d = 0 untuk paling banyak satu nilai dari $z_{\dot{a}} \in S_{\dot{a}}$, dan $z_{\dot{a}}$ bebas dari pandangan \mathcal{A} , peluang bersyarat d = 0 paling besar $\frac{1}{|S_{\dot{a}}|} \leq \frac{1}{4}$. \square

Lemma 5

Peluang bersyarat e tidak membagi $d = \sum_a v_a d_a$ paling sedikit $\frac{3}{8}$. (diberikan α , $\gcd(e,pq) = 1$, dan $\{d_a : a \in A\}$ sedemikian hingga $e \nmid \gcd(d_a : a \in A)$) Bukti:

Karena $e \nmid \gcd(d_a : a \in A)$, maka e tidak membagi d_a untuk suatu $a \in A$. Ingat bahwa $v_a = w_a + pqz_a$, dimana distribusi bersyarat dari z_a (w_a yang diberikan) seragam atas himpunan S_a . Selain itu, karena $\gcd(e,pq)=1$, maka pq memiliki invers perkalian modulo e. Selesaikan persamaan $d \equiv 0 \pmod{e}$ untuk z_a , diperoleh

$$\sum_{a} v_a d_a \equiv 0 \pmod{e}$$

$$v_a d_a + \sum_{a \neq a} v_a d_a \equiv 0 \pmod{e}$$

$$pqz_a + w_a \equiv -\sum_{a \neq a} v_a d_a \pmod{e}$$

$$z_a \equiv -\frac{\sum_{a \neq a} (v_a d_a) + w_a}{pq} \pmod{e}$$

Karena z_a dipilih secara acak seragam dalam interval S_a , dengan menggunakan prinsip sangkar merpati, ini terjadi dengan peluang paling besar

$$\frac{\left|\frac{|S_{\dot{a}}|}{e}\right|}{|S_{\dot{a}}|} \le \frac{|S_{\dot{a}}| + e - 1}{e \cdot |S_{\dot{a}}|} = \frac{1}{e} + \frac{1}{|S_{\dot{a}}|} - \frac{1}{e \cdot |S_{\dot{a}}|} \le \frac{5}{8}.$$

Di sini telah digunakan fakta bahwa $|S_a| \ge 4$ dan $e \ge 2$ merupakan bilangan bulat. Jadi, $e \nmid d$ dengan peluang paling sedikit $\frac{3}{8}$. \square

Teorema 1

Jika permasalahan RSA kuat sulit secara asimtotik berkenaan dengan distribusi ensembel $\mathcal N$ atas hasil kali prima selamat, maka keluarga grup komputasional $\{\mathbb Z_N^*\colon N\in\mathcal N_k\}$ (dengan operasi hasil kali modulo dan prosedur sampling seragam atas QR_N) merupakan grup *pseudo-free* berkenaan dengan ensembel distribusi yang sama.

Bukti:

Misalkan \mathbb{Z}_N^* tidak *pseudo-free*; dengan kata lain, ada algoritma probabilistik berwaktu polinomial \mathcal{A} yang pada input acak $N \in \mathcal{N}_k$ dan elemen grup acak $\alpha: A \to \mathrm{QR}_N$, menghasilkan output persamaan yang tak terpenuhi $E: w_1 = w_2$ (atas konstanta A dan variabel X) bersama dengan solusi $\xi: X \to \mathbb{Z}_N^*$ milik E_α atas grup \mathbb{Z}_N^* . Akan digunakan \mathcal{A} untuk menyelesaikan permasalahan $\mathrm{QR}\text{-RSA}$ kuat untuk distribusi yang sama. Yakni, diberikan secara acak $N \in \mathcal{N}_k$ dan $\gamma \in \mathrm{QR}_N$, kemudian dicari bilangan bulat e > 1 dan elemen grup $\xi \in \mathbb{Z}_N^*$ sedemikian hingga $\xi^e = \gamma$. Dengan menggunakan Teorema 2.5.9, hal ini juga mengakibatkan algoritma tersebut mampu menyelesaikan permasalahan RSA kuat standar. Algoritma \mathcal{A} mula-mula akan mengecek

 $g = \gcd(\gamma - 1, N)$. Kemudian akan dibagi menjadi 3 kasus:

- 1) jika g = N, maka $N|\gamma 1$, dan $\gamma \equiv 1 \pmod{N}$. Jadi bisa langsung ditentukan output berupa solusi permasalahan QR-RSA kuat dengan input (N, γ) , contoh: $(\xi, e) = (1,3)$.
- 2) jika $g \notin \{1, N\}$, maka $g \in \{P, Q\}$, dan dapat dengan mudah menghitung nilai $\phi(N)$ yaitu $\phi(N) = (g-1)\left(\frac{N}{g}-1\right)$. Juga didapatkan output solusi $(\xi, e) = (\gamma, \phi(N) + 1)$ untuk permasalahan QR-RSA kuat (N, γ) .
- 3) jika g=1, maka dengan menggunakan Lemma 3.1, γ pembangun QR_N dan diproses sebagai berikut.

Akan digunakan γ untuk sampling $\alpha(a) \in QR_N$. Untuk sebarang $a \in A$, pilih $v_a \in \{0, ..., N|A|K(k)-1\}$ secara acak seragam untuk suatu fungsi super-polinomial $K(k) \ge k^c, \forall c \in \mathbb{N}$, dan tentukan $\alpha(a) = \gamma^{v_a}$. Dengan menggunakan Lemma 3.2, jarak statistik antara $\alpha(a)$ dan distribusi atas QR_N paling besar

$$\frac{|QR_N|}{2N|A|K(k)} < \frac{|QR_N|}{2\phi(N)|A|K(k)} = \frac{1}{8|A|K(k)} < \frac{1}{|A|K(k)} \le \frac{1}{K(k)}$$

Karena nilai $\alpha(a)$ dipilih secara bebas, jarak antara α dan pengaitan terpilih seragam paling besar sebesar $\frac{1}{K(k)} \leq \frac{1}{k^c}, \forall c \in \mathbb{N}$. Ketika α berdistribusi normal, algoritma \mathcal{A} berhasil dengan peluang yang tak terabaikan $\delta(k) \geq k^{-c_0}$ untuk suatu $c_0 \in \mathbb{N}$. Karena α berjarak kurang dari $\frac{1}{K(k)}$ dari distribusi normal, \mathcal{A} berhasil dengan peluang $\delta(k) - \frac{1}{K(k)} > \frac{1}{k^{c_0}} - \frac{1}{k^c}$. Algoritma \mathcal{A} dengan peluang tersebut berhasil menghasilkan output persamaan $E: w_1 = w_2$ (atas variabel X dan konstanta A) yang tak terpenuhi atas F(A). Untuk menyelesaikan permasalahan QR-RSA kuat, dengan menggunakan Lemma 3.3, persamaan $E: w_1 = w_2$ dan solusi ξ diubah menjadi persamaan satu peubah

$$E': x^e = \prod_{a \in A} a^{d_a}$$

yang tak terpenuhi atas grup bebas dengan

$$e = \gcd(e_x : x \in X)$$

dan solusinya

$$\xi'(x) = \prod_{x \in X} \xi(x)^{\frac{e_X}{e}}$$

atas \mathbb{Z}_N^* . Perhatikan bahwa persamaan E' terpenuhi (atas grup bebas) jika $e|\gcd(d_a:a\in A)$. Oleh karena itu, pastilah $e\nmid\gcd(d_a:a\in A)$. Perhatikan bahwa

$$(\xi')^e = \prod_{a \in A} \alpha(a)^{d_a} = \prod_{a \in A} (\gamma^{v_a})^{d_a}$$
$$= \gamma^{\sum_a v_a d_a}$$

Berdasarkan nilai gcd(e, pq), dibagi 3 kasus:

- 1) jika $\gcd(e,pq) = pq$ dan $e \neq 0$, maka pq|e dan bisa langsung dihasilkan output solusi $(\gamma,|e|+1)$ untuk permasalahan QR-RSA kuat (N,γ) karena $o(\gamma) = pq$ sehingga $\gamma^{|e|+1} \equiv \gamma^{cpq+1} \equiv (\gamma^{pq})^c \gamma \equiv 1^c \cdot \gamma \equiv 1 \cdot \gamma \equiv \gamma \pmod{N}$. Meskipun pq tidak diketahui, namun pengecekan bisa dilakukan dengan cara mengecek apakah solusi $(\gamma,|e|+1)$ valid. Cara serupa dilakukan untuk semua kasus berikutnya.
- 2) jika $\gcd(e,pq) \in \{p,q\}$, maka $o(\gamma^e) = \frac{pq}{\gcd(pq,e)} \in \{p,q\}$. Tentunya, γ^e bukan pembangun QR_N . Menurut Lemma 3.1, $\gcd(\gamma^e-1,N) \neq 1$. Karena $\gamma^e \not\equiv 1 \pmod{N}$, juga berakibat $N \nmid (\gamma^e-1)$ sehingga $\gcd(\gamma^e-1,N) \neq N$. Oleh sebab itu, pastilah $g=\gcd(\gamma^e-1,N) \in \{P,Q\}$. Sehingga dapat dengan mudah menghitung nilai $\phi(N)$ yaitu $\phi(N)=(g-1)\left(\frac{N}{g}-1\right)$. Juga didapatkan output solusi $(\xi,e)=(\gamma,\phi(N)+1)$ untuk permasalahan $\operatorname{QR-RSA}$ kuat (N,γ) .
- 3) jika e=0, dengan menggunakan Lemma 3.4, maka $d=\sum_a v_a d_a \neq 0$ terjadi dengan peluang paling besar $\frac{1}{4}$. Akibatnya, dengan peluang paling kecil $\frac{3}{4}$, $(\gamma, |d|+1)$ adalah solusi permasalahan QR-RSA kuat (N, γ) karena |d|+1>1 dan

$$\gamma^{|d|+1} \equiv \gamma \cdot \gamma^{|d|} \equiv \gamma \cdot (\xi')^0 \equiv \gamma \pmod{N}.$$

4) jika $e \neq 0$ dan $\gcd(pq, e) = 1$, dari Lemma 3.5, maka diperoleh bahwa peluang $e \nmid d = \sum_a v_a d_a$ paling kecil $\frac{3}{8}$. Diproses sebagai berikut:

Misalkan $e' = \frac{e}{t}$ dan $d' = \frac{d}{t}$ dengan $t = \gcd(e, d)$. Dengan mengasumsikan $e \nmid d$ (yang terjadi dengan peluang paling sedikit $\frac{3}{8}$), diperoleh $t \neq e$, dan berakibat e' > 1. Perhatikan bahwa dari $\gcd(e, pq)$

dan t|e diperoleh $gcd(t, |QR_N|) = 1$. Oleh sebab itu, kongruensi $(\xi')^e \equiv \gamma^d \pmod{N}$ berakibat

$$(\xi')^{e't} \equiv \gamma^{d't} \pmod{N}$$
$$(\xi')^{2e't} \equiv \gamma^{2d't} \pmod{N}$$

karena kedua ruas residu kuadratik dan gcd(t,pq) = 1, maka cukup untuk menyimpulkan bahwa

$$(\xi')^{2e'} \equiv \gamma^{2d'} (\operatorname{mod} N)$$

sehingga

$$N|\left((\xi')^{2e'} - \gamma^{2d'}\right)$$

$$N|\left((\xi')^{e'} + \gamma^{d'}\right)\left((\xi')^{e'} - \gamma^{d'}\right)$$

Jika $(\xi')^{e'} \neq \pm \gamma^{d'}$, maka $(\xi')^{e'} \pm \gamma^{d'} \neq 0$. Sehingga bisa dihitung faktorisasi $\{P,Q\} = \{\gcd(N,(\xi')^{e'} + \gamma^{d'}), \gcd(N,(\xi')^{e'} - \gamma^{d'})\}$ dan $\phi(N) = (P-1)(Q-1)$. Sehingga dapat dihasilkan output solusi $(\gamma,\phi(N)+1)$ untuk permasalahan QR-RSA kuat (N,γ) . Kasus berikutnya terjadi jika $(\xi')^{e'} = \pm \gamma^{d'}$. Jika $(\xi')^{e'} = \gamma^{d'}$, maka dengan mengunakan algoritma Euclid yang diperluas, dicari bilangan bulat e'' dan d'' sedemikian hingga $e'e'' + d'd'' = \gcd(e',d') = 1$. Output solusinya adalah $((\xi')^{d''}\gamma^{e''},e')$ karena

$$((\xi')^{d''}\gamma^{e''})^{e'} \equiv (\xi')^{e'd''}\gamma^{e'e''} \equiv \gamma^{d'd''}\gamma^{e'e''} \equiv \gamma(\text{mod } N)$$

Jika $(\xi')^{e'} = -\gamma^{d'}$, maka e' haruslah ganjil agar $\left(-(\xi')\right)^{e'} = -(\xi')^{e'} = \gamma^{d'}$. Dengan begitu solusi untuk permasalahan QR-RSA kuat (N,γ) adalah $\left(\left(-(\xi')\right)^{d''}\gamma^{e''},e'\right)$ karena

$$((-(\xi'))^{d''}\gamma^{e''})^{e'} \equiv (-(\xi'))^{e'd''}\gamma^{e'e''}$$
$$\equiv \gamma^{d'd''}\gamma^{e'e''} \equiv \gamma \pmod{N}$$

terbukti. □

KESIMPULAN

Keluarga grup komputasional $\{\mathbb{Z}_N^*: N \in \mathcal{N}_k\}$ (dengan operasi perkalian modulo dan prosedur sampling seragam atas QR_N) merupakan grup pseudo-free berkenaan dengan ensembel distribusi \mathcal{N} atas hasil kali prima selamat di bawah asumsi RSA kuat. Beberapa open problem yang bisa diangkat sebagai riset lanjutan antara lain apakah \mathbb{Z}_N^* juga pseudo-free bahkan jika N hasil kali bilangan prima sebarang atau ketika elemen γ diambil dari \mathbb{Z}_N^* meskipun bukan residu kuadratik.

Atau apakah bisa dibuktikan bahwa \mathbb{Z}_N^* *pseudo-free* dengan mengasumsikan bahwa masalah RSA atau pemfaktoran N sulit diselesaikan.

DAFTAR PUSTAKA

- [1] Buchmann, Johannes A.. 2000. *Introduction to Cryptography*. New York: Springer-Verlag New York, Inc..
- [2] Cramer and Shoup. 2000. Signature schemes based on the strong RSA assumption. *ACM Transactions on Information and System Security*. 3(3):161–185, 2000. Preliminary version in CCS 1999.
- [3] Fraleigh, John B. 2000. *A First Course in Abstract Algebra*. Sixth Edition. Addison-Wesley Publishing Company, Inc. USA.
- [4] Gallian, Joseph. 2010. *Contemporary Abstract Algebra*. Toronto: D. C. Heath and Company.
- [5] Goldreich, Oded. 2001. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press.
- [6] Menezes, Oorcshot, and Vanstone. 1996. Handbook of Applied Cryptography. CRC Press, Inc. USA.
- [7] Micciancio, Daniel. 2008. The RSA group is pseudo-free. *Journal of Cryptology*. Volume 23. Issue 2. pp: 169-186.
- [8] Papoulis, Athanasios. 2002. *Probability, Random Variables, and Stochastic Processes*. Fourth Edition. McGraw-Hill Companies, Inc.
- [9] Rivest, Ronald L.. 2004. On the Notion of Pseudo-Free Groups. *Theory of Cryptography*. Volume 2951. pp: 505-521.
- [10] Riyanto, Muhamad Zaki. 2007. Pengamanan Pesan Rahasia Menggunakan Algoritma Kriptografi Elgamal Atas Grup Pergandaan Zp*. Skripsi. Yogyakarta: Universitas Gadjah Mada.
- [11] Rosen, Kenneth H. 2003. Discrete Mathematics and Its Applications. Fifth Edition. AT&T Laboratories. USA.
- [12] Rosen, Kenneth H.. 2000. *Elementary Number Theory and Its Applications*. Fourth Edition. AT&T Laboratories. USA.
- [13] Stinson, D.R.. 1995. *Cryptography Theory and Practice*. Florida: CRC Press, Inc..